The RF Power Behind Design Innovation
نویسندگان
چکیده
Power density in active devices is increasing according to the demands of transistor users. Applications in commercial wireless, avionics, broadcast, industrial, and medical systems are pushing the envelope for solid-state power, with growing requirements for higher output power levels from fewer output-stage devices. At Freescale Semiconductor, supplying high-performance radio frequency (RF) and microwave transistors for these applications is only part of the challenge, as the company backs its devices with unparalleled capabilities in characterization, packaging, and applications engineering. Freescale Semiconductor enjoys a rich heritage in fabricating and selling both discrete and integrated RF semiconductors. Last year, the company introduced its seventh generation of silicon RF laterally diffused metaloxide-semiconductor (LDMOS) in the form of the HV7 process, with the output power and linearity performance through 3.8 GHz needed for WiMAX infrastructure applications. They have also announced a highvoltage version of this process, operating at 48 V, for industrial, scientific, and medical (ISM) applications. Freescale has also extended its highpower GaAs PHEMT device performance to 6 GHz, for WiMAX amplifier applications. More recently, the company announced the first two-stage radiofrequency integrated circuits (RF ICs) capable of delivering 100 W output power. When driven by Freescale’s cost-effective MMG3005N generalpurpose amplifier (GPA), the MWE6IC9100N and MW7IC181 00N RF ICs form a complete 100-W power-amplifier solution for wireless base stations operating at 900 and 1800 MHz. While the performance levels of these discrete and integrated RF power devices are outstanding, putting the devices into the hands of their customers is only the beginning. Each shipped device is supported by the company’s “service-in-waiting” personnel with diversified expertise in testing, modeling, packaging, and applications support.
منابع مشابه
Design of Gate-Driven Quasi Floating Bulk OTA-Based Gm–C Filter for PLL Applications
The advancement in the integrated circuit design has developed the demand for low voltage portable analog devices in the market. This demand has increased the requirement of the low-power RF transceiver. A low-power phase lock loop (PLL) is always desirable to fulfill the need for a low power RF transceiver. This paper deals with the designing of the low power transconductance- capacitance (Gm-...
متن کاملبررسی روشی جدید در تزویج توان موج رادیویی به کاواک شتاب دهندههای ذرات باردار
In this paper, the feasibility studty of a new method of RF power coupling to acceleration cavity of charged particles accelerator will be evaluated. In this method a slit is created around the accelerator cavity, and RF power amplifier modules is connected directly to the acceleration cavity. In fact, in this design, the cavity in addition to acting as an acceleration cavity, acts as a RF powe...
متن کاملA Review on the Extent of Urban Design Intervention in Iran’s Architectural Structures for Interaction with Architectural Innovation
The intervention of urban design in Irans architectural structures has been for many years a challenging issue for architects and urban designers over their professional realm. The preservation of architectural structures in Iran has always resorted to extremes. This control and direction has sometimes resulted in exclusion of architecture position and has sometimes, once faced with lack of pro...
متن کاملDesign and simulation of a RF MEMS shunt capacitive switch with low actuation voltage, low loss and high isolation
According to contact type, RF MEMS switches are generally classified into two categories: Capacitive switches and Metal-to-Metal ones. The capacitive switches are capable to tolerate a higher frequency range and more power than M-to-M switches. This paper presents a cantilever shunt capacitive RF MEMS switch with characteristics such as low trigger voltage, high capacitive ratio, short switchin...
متن کامل3-D RF Coil Design Considerations for MRI
High-frequency coils are widely used in medical applications, such as Magnetic Resonance Imaging (MRI) systems. A typical medical MRI includes a local radio frequency transmit/receive coil. This coil is designed for maximum energy transfer or wave transfer through magnetic resonance. Mutual inductance is a dynamic parameter that determines the energy quantity to be transferred wirelessly by ele...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007